web-dev-qa-db-fra.com

Comment utiliser les données de capteur onSensorChanged en combinaison avec OpenGL

(edit: j'ai ajouté la meilleure approche de travail dans mon cadre de réalité augmentée et je tiens maintenant également compte du gyroscope, ce qui le rend beaucoup plus stable: cadre DroidAR )

J'ai écrit un TestSuite pour savoir comment calculer les angles de rotation à partir des données que vous obtenez dans SensorEventListener.onSensorChanged(). J'espère vraiment que vous pourrez compléter ma solution pour aider les personnes qui auront les mêmes problèmes que moi. Voici le code, je pense que vous le comprendrez après l'avoir lu.

N'hésitez pas à le changer, l’idée principale était d’implémenter plusieurs méthodes pour envoyer les angles d’orientation à la vue opengl ou à toute autre cible qui en aurait besoin.

les méthodes 1 à 4 fonctionnent, elles envoient directement le fichier rotationMatrix à la vue OpenGl.

la méthode 6 fonctionne aussi maintenant, mais je n'ai aucune explication sur la raison pour laquelle la rotation doit être effectuée y x z ..

j'espère que la meilleure méthode serait la méthode 5 si elle fonctionnerait, car ce serait la plus facile à comprendre, mais je ne suis pas sûr de son efficacité. . le code complet n'est pas optimisé, donc je vous recommande de ne pas l'utiliser tel qu'il est dans votre projet.

c'est ici:

/**
 * This class provides a basic demonstration of how to use the
 * {@link Android.hardware.SensorManager SensorManager} API to draw a 3D
 * compass.
 */
public class SensorToOpenGlTests extends Activity implements Renderer,
  SensorEventListener {

 private static final boolean TRY_TRANSPOSED_VERSION = false;

 /*
  * MODUS overview:
  * 
  * 1 - unbufferd data directly transfaired from the rotation matrix to the
  * modelview matrix
  * 
  * 2 - buffered version of 1 where both acceleration and magnetometer are
  * buffered
  * 
  * 3 - buffered version of 1 where only magnetometer is buffered
  * 
  * 4 - buffered version of 1 where only acceleration is buffered
  * 
  * 5 - uses the orientation sensor and sets the angles how to rotate the
  * camera with glrotate()
  * 
  * 6 - uses the rotation matrix to calculate the angles
  * 
  * 7 to 12 - every possibility how the rotationMatrix could be constructed
  * in SensorManager.getRotationMatrix (see
  * http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all
  * possibilities)
  */

 private static int MODUS = 2;

 private GLSurfaceView openglView;
 private FloatBuffer vertexBuffer;
 private ByteBuffer indexBuffer;
 private FloatBuffer colorBuffer;

 private SensorManager mSensorManager;
 private float[] rotationMatrix = new float[16];
 private float[] accelGData = new float[3];
 private float[] bufferedAccelGData = new float[3];
 private float[] magnetData = new float[3];
 private float[] bufferedMagnetData = new float[3];
 private float[] orientationData = new float[3];

 // private float[] mI = new float[16];

 private float[] resultingAngles = new float[3];

 private int mCount;

 final static float rad2deg = (float) (180.0f / Math.PI);

 private boolean landscape;

 public SensorToOpenGlTests() {
 }

 /** Called with the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);

  mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
  openglView = new GLSurfaceView(this);
  openglView.setRenderer(this);
  setContentView(openglView);
 }

 @Override
 protected void onResume() {
  // Ideally a game should implement onResume() and onPause()
  // to take appropriate action when the activity looses focus
  super.onResume();
  openglView.onResume();

  if (((WindowManager) getSystemService(WINDOW_SERVICE))
    .getDefaultDisplay().getOrientation() == 1) {
   landscape = true;
  } else {
   landscape = false;
  }

  mSensorManager.registerListener(this, mSensorManager
    .getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
    SensorManager.SENSOR_DELAY_GAME);
  mSensorManager.registerListener(this, mSensorManager
    .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
    SensorManager.SENSOR_DELAY_GAME);
  mSensorManager.registerListener(this, mSensorManager
    .getDefaultSensor(Sensor.TYPE_ORIENTATION),
    SensorManager.SENSOR_DELAY_GAME);
 }

 @Override
 protected void onPause() {
  // Ideally a game should implement onResume() and onPause()
  // to take appropriate action when the activity looses focus
  super.onPause();
  openglView.onPause();
  mSensorManager.unregisterListener(this);
 }

 public int[] getConfigSpec() {
  // We want a depth buffer, don't care about the
  // details of the color buffer.
  int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE };
  return configSpec;
 }

 public void onDrawFrame(GL10 gl) {

  // clear screen and color buffer:
  gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
  // set target matrix to modelview matrix:
  gl.glMatrixMode(GL10.GL_MODELVIEW);
  // init modelview matrix:
  gl.glLoadIdentity();
  // move camera away a little bit:

  if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) {

   if (landscape) {
    // in landscape mode first remap the rotationMatrix before using
    // it with glMultMatrixf:
    float[] result = new float[16];
    SensorManager.remapCoordinateSystem(rotationMatrix,
      SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X,
      result);
    gl.glMultMatrixf(result, 0);
   } else {
    gl.glMultMatrixf(rotationMatrix, 0);
   }
  } else {
   //in all other modes do the rotation by hand
   //the order y x z is important!
   gl.glRotatef(resultingAngles[2], 0, 1, 0);
   gl.glRotatef(resultingAngles[1], 1, 0, 0);
   gl.glRotatef(resultingAngles[0], 0, 0, 1);
  }

  //move the axis to simulate augmented behaviour:
  gl.glTranslatef(0, 2, 0);

  // draw the 3 axis on the screen:
  gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer);
  gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer);
  gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer);
 }

 public void onSurfaceChanged(GL10 gl, int width, int height) {
  gl.glViewport(0, 0, width, height);
  float r = (float) width / height;
  gl.glMatrixMode(GL10.GL_PROJECTION);
  gl.glLoadIdentity();
  gl.glFrustumf(-r, r, -1, 1, 1, 10);
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
  gl.glDisable(GL10.GL_DITHER);
  gl.glClearColor(1, 1, 1, 1);
  gl.glEnable(GL10.GL_CULL_FACE);
  gl.glShadeModel(GL10.GL_SMOOTH);
  gl.glEnable(GL10.GL_DEPTH_TEST);

  gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
  gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

  // load the 3 axis and there colors:
  float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
  float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 };
  byte indices[] = { 0, 1, 0, 2, 0, 3 };

  ByteBuffer vbb;
  vbb = ByteBuffer.allocateDirect(vertices.length * 4);
  vbb.order(ByteOrder.nativeOrder());
  vertexBuffer = vbb.asFloatBuffer();
  vertexBuffer.put(vertices);
  vertexBuffer.position(0);

  vbb = ByteBuffer.allocateDirect(colors.length * 4);
  vbb.order(ByteOrder.nativeOrder());
  colorBuffer = vbb.asFloatBuffer();
  colorBuffer.put(colors);
  colorBuffer.position(0);

  indexBuffer = ByteBuffer.allocateDirect(indices.length);
  indexBuffer.put(indices);
  indexBuffer.position(0);
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }

 public void onSensorChanged(SensorEvent event) {

  // load the new values:
  loadNewSensorData(event);

  if (MODUS == 1) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
  }

  if (MODUS == 2) {
   rootMeanSquareBuffer(bufferedAccelGData, accelGData);
   rootMeanSquareBuffer(bufferedMagnetData, magnetData);
   SensorManager.getRotationMatrix(rotationMatrix, null,
     bufferedAccelGData, bufferedMagnetData);
  }

  if (MODUS == 3) {
   rootMeanSquareBuffer(bufferedMagnetData, magnetData);
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     bufferedMagnetData);
  }

  if (MODUS == 4) {
   rootMeanSquareBuffer(bufferedAccelGData, accelGData);
   SensorManager.getRotationMatrix(rotationMatrix, null,
     bufferedAccelGData, magnetData);
  }

  if (MODUS == 5) {
   // this mode uses the sensor data recieved from the orientation
   // sensor
   resultingAngles = orientationData.clone();
   if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) {
    resultingAngles[1] = orientationData[0];
    resultingAngles[2] = orientationData[1];
    resultingAngles[0] = orientationData[2];
   }
  }

  if (MODUS == 6) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   final float[] anglesInRadians = new float[3];
   SensorManager.getOrientation(rotationMatrix, anglesInRadians);
   //TODO check for landscape mode
   resultingAngles[0] = anglesInRadians[0] * rad2deg;
   resultingAngles[1] = anglesInRadians[1] * rad2deg;
   resultingAngles[2] = anglesInRadians[2] * -rad2deg;
  }

  if (MODUS == 7) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);

   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in x y z
    * order Rx*Ry*Rz
    */

   resultingAngles[2] = (float) (Math.asin(rotationMatrix[2]));
   final float cosB = (float) Math.cos(resultingAngles[2]);
   resultingAngles[2] = resultingAngles[2] * rad2deg;
   resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB))
     * rad2deg;
   resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB))
     * rad2deg;
  }

  if (MODUS == 8) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in z y x
    */

   resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8]));
   final float cosB = (float) Math.cos(resultingAngles[2]);
   resultingAngles[2] = resultingAngles[2] * rad2deg;
   resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB))
     * rad2deg;
   resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB))
     * rad2deg;
  }

  if (MODUS == 9) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in z x y
    * 
    * note z axis looks good at this one
    */

   resultingAngles[1] = (float) (Math.asin(rotationMatrix[9]));
   final float minusCosA = -(float) Math.cos(resultingAngles[1]);
   resultingAngles[1] = resultingAngles[1] * rad2deg;
   resultingAngles[2] = (float) (Math.asin(rotationMatrix[8]
     / minusCosA))
     * rad2deg;
   resultingAngles[0] = (float) (Math.asin(rotationMatrix[1]
     / minusCosA))
     * rad2deg;
  }

  if (MODUS == 10) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in y x z
    */

   resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6]));
   final float cosA = (float) Math.cos(resultingAngles[1]);
   resultingAngles[1] = resultingAngles[1] * rad2deg;
   resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA))
     * rad2deg;
   resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA))
     * rad2deg;
  }

  if (MODUS == 11) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in y z x
    */

   resultingAngles[0] = (float) (Math.asin(rotationMatrix[4]));
   final float cosC = (float) Math.cos(resultingAngles[0]);
   resultingAngles[0] = resultingAngles[0] * rad2deg;
   resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC))
     * rad2deg;
   resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC))
     * rad2deg;
  }

  if (MODUS == 12) {
   SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
     magnetData);
   rotationMatrix = transpose(rotationMatrix);
   /*
    * this assumes that the rotation matrices are multiplied in x z y
    */

   resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1]));
   final float cosC = (float) Math.cos(resultingAngles[0]);
   resultingAngles[0] = resultingAngles[0] * rad2deg;
   resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC))
     * rad2deg;
   resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC))
     * rad2deg;
  }
  logOutput();
 }

 /**
  * transposes the matrix because it was transposted (inverted, but here its
  * the same, because its a rotation matrix) to be used for opengl
  * 
  * @param source
  * @return
  */
 private float[] transpose(float[] source) {
  final float[] result = source.clone();
  if (TRY_TRANSPOSED_VERSION) {
   result[1] = source[4];
   result[2] = source[8];
   result[4] = source[1];
   result[6] = source[9];
   result[8] = source[2];
   result[9] = source[6];
  }
  // the other values in the matrix are not relevant for rotations
  return result;
 }

 private void rootMeanSquareBuffer(float[] target, float[] values) {

  final float amplification = 200.0f;
  float buffer = 20.0f;

  target[0] += amplification;
  target[1] += amplification;
  target[2] += amplification;
  values[0] += amplification;
  values[1] += amplification;
  values[2] += amplification;

  target[0] = (float) (Math
    .sqrt((target[0] * target[0] * buffer + values[0] * values[0])
      / (1 + buffer)));
  target[1] = (float) (Math
    .sqrt((target[1] * target[1] * buffer + values[1] * values[1])
      / (1 + buffer)));
  target[2] = (float) (Math
    .sqrt((target[2] * target[2] * buffer + values[2] * values[2])
      / (1 + buffer)));

  target[0] -= amplification;
  target[1] -= amplification;
  target[2] -= amplification;
  values[0] -= amplification;
  values[1] -= amplification;
  values[2] -= amplification;
 }

 private void loadNewSensorData(SensorEvent event) {
  final int type = event.sensor.getType();
  if (type == Sensor.TYPE_ACCELEROMETER) {
   accelGData = event.values.clone();
  }
  if (type == Sensor.TYPE_MAGNETIC_FIELD) {
   magnetData = event.values.clone();
  }
  if (type == Sensor.TYPE_ORIENTATION) {
   orientationData = event.values.clone();
  }
 }

 private void logOutput() {
  if (mCount++ > 30) {
   mCount = 0;
   Log.d("Compass", "yaw0: " + (int) (resultingAngles[0])
     + "  pitch1: " + (int) (resultingAngles[1]) + "  roll2: "
     + (int) (resultingAngles[2]));
  }
 }
}
63
Simon Heinen

Il serait plus facile de tester et de déboguer la Méthode 5 à l'aide de la fonction lookAt de GLU: http://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml

En outre, comme Villoren l'a suggéré, il est bon de filtrer les données de votre capteur, mais cela ne causerait pas vraiment de bugs si vous déplacez le périphérique lentement. Si vous voulez essayer, voici un exemple simple:

newValue = oldValue * 0.9 + sensorValue * 0.1;
oldValue = newValue;
1
igorrafael

Je n'ai pas encore pu tester le code (mais je vais le faire, ça a l'air vraiment intéressant). Une chose qui a attiré mon attention est que vous ne semblez en aucune façon filtrer les données du capteur.

Les lectures du capteur sont très bruyantes par nature, spécialement le capteur magnétique. Je vous suggère de mettre en place un filtrage passe-bas.

Voir mon réponse précédente pour davantage de lecture.

1
villoren

Après avoir analysé votre code ci-dessus, dans la méthode 5, vous affectez les données d’orientation comme suit

resultingAngles[1] = orientationData[0]; // orientation z axis to y axis
resultingAngles[2] = orientationData[1]; // orientation x axis to z axis 
resultingAngles[0] = orientationData[2]; // orientation y axis to x axis

Vous avez effectué la rotation de la manière y z x. Essayez de changer l'orientation ..

Je pense que cela pourrait être le problème ici .. S'il vous plaît vérifier et laissez-moi savoir ..

Veuillez vous reporter à la documentation pour les valeurs d'événement, http://developer.Android.com/guide/topics/sensors/sensors_position.html

Merci pour votre dur travail ..

1
Sripathi

Découvrez l'application Fusion Fusion Demo qui utilise différents capteurs (gyroscope, vecteur de rotation, accéléromètre + compas, etc.) et restitue les sorties des événements onSensorChanged sous la forme d'un cube coloré qui tourne en conséquence sur votre téléphone.

Les résultats de ces événements sont stockés sous forme de quaternions et de matrices de rotation et utilisés dans cette classe qui est OpenGL.

0
Alexander Pacha

Notez que si vous obtenez constamment de mauvaises lectures, vous devrez peut-être calibrer votre compas en le déplaçant avec les poignets (figure 8).

Difficile d'expliquer cela avec des mots; regardez cette vidéo: http://www.youtube.com/watch?v=sP3d00Hr14o

0
HRJ

Vous pouvez utiliser and engine pour utiliser des capteurs avec OpenGL. Consultez simplement l'exemple https://github.com/nicolasgramlich/AndEngineExamples/tree/GLES2/src/org/andengine/examples/app/cityradar

0
Ajay