web-dev-qa-db-fra.com

Que signifie "fragment" dans ANTLR?

Que signifie fragment dans ANTLR?

J'ai vu les deux règles:

fragment DIGIT : '0'..'9';

et

DIGIT : '0'..'9';

Quelle est la différence?

87
Oscar Mederos

Un fragment s'apparente un peu à une fonction en ligne: il rend la grammaire plus lisible et plus facile à maintenir.

Un fragment ne sera jamais compté comme un jeton, il ne sert qu'à simplifier une grammaire.

Considérer:

NUMBER: DIGITS | OCTAL_DIGITS | HEX_DIGITS;
fragment DIGITS: '1'..'9' '0'..'9'*;
fragment OCTAL_DIGITS: '0' '0'..'7'+;
fragment HEX_DIGITS: '0x' ('0'..'9' | 'a'..'f' | 'A'..'F')+;

Dans cet exemple, la correspondance d'un NUMBER renvoie toujours un NUMBER au lexer, qu'il corresponde à "1234", "0xab12" ou "0777".

Voir point

98
sirbrialliance

Selon le livre de références Definitive Antlr4:

Les règles précédées d'un fragment ne peuvent être appelées qu'à partir d'autres règles de lexer; elles ne sont pas des jetons à part entière.

en fait, ils amélioreront la lisibilité de vos grammaires.

regardez cet exemple:

STRING : '"' (ESC | ~["\\])* '"' ;
fragment ESC : '\\' (["\\/bfnrt] | UNICODE) ;
fragment UNICODE : 'u' HEX HEX HEX HEX ;
fragment HEX : [0-9a-fA-F] ;

STRING est un lexer utilisant une règle de fragment comme ESC. Unicode est utilisé dans la règle Esc et Hex est utilisé dans la règle de fragment Unicode. Les règles ESC et UNICODE et HEX ne peuvent pas être utilisées explicitement.

13
Nastaran Hakimi

Cette article de blog a un exemple très clair où fragment fait une différence significative:

grammar number;  

number: INT;  
DIGIT : '0'..'9';  
INT   :  DIGIT+;

La grammaire reconnaîtra "42" mais pas "7". Vous pouvez le corriger en faisant de digit un fragment (ou en déplaçant DIGIT après INT).

7
Vesal

La référence ANTLR 4 définitive (page 106):

Les règles préfixées par fragment ne peuvent être appelées qu'à partir d'autres règles de lexer; ce ne sont pas des jetons à part entière.


Concepts abstraits:

Case1: (si j'ai besoin des entités RULE1, RULE2, RULE3 ou informations sur le groupe)

rule0 : RULE1 | RULE2 | RULE3 ;
RULE1 : [A-C]+ ;
RULE2 : [DEF]+ ;
RULE3 : ('G'|'H'|'I')+ ;


Case2: (si je m'en fous RULE1, RULE2, RULE3, je me concentre uniquement sur RULE0)

RULE0 : [A-C]+ | [DEF]+ | ('G'|'H'|'I')+ ;
// RULE0 is a terminal node. 
// You can't name it 'rule0', or you will get syntax errors:
// 'A-C' came as a complete surprise to me while matching alternative
// 'DEF' came as a complete surprise to me while matching alternative


Case3: (est équivalent à Case2, ce qui le rend plus lisible que Case2)

RULE0 : RULE1 | RULE2 | RULE3 ;
fragment RULE1 : [A-C]+ ;
fragment RULE2 : [DEF]+ ;
fragment RULE3 : ('G'|'H'|'I')+ ;
// You can't name it 'rule0', or you will get warnings:
// warning(125): implicit definition of token RULE1 in parser
// warning(125): implicit definition of token RULE2 in parser
// warning(125): implicit definition of token RULE3 in parser
// and failed to capture rule0 content (?)


Différences entre Case1 et Case2/3?

  1. Les règles de lexer sont équivalentes
  2. Chacun de RULE1/2/3 dans Case1 est un groupe de capture, similaire à Regex: (X)
  3. Chacun des RULE1/2/3 dans Case3 est un groupe non capturant, similaire à Regex :( ?: X) enter image description here



Voyons un exemple concret.

Objectif: identifier [ABC]+, [DEF]+, [GHI]+ jetons

input.txt

ABBCCCDDDDEEEEE ABCDE
FFGGHHIIJJKK FGHIJK
ABCDEFGHIJKL


Main.py

import sys
from antlr4 import *
from AlphabetLexer import AlphabetLexer
from AlphabetParser import AlphabetParser
from AlphabetListener import AlphabetListener

class MyListener(AlphabetListener):
    # Exit a parse tree produced by AlphabetParser#content.
    def exitContent(self, ctx:AlphabetParser.ContentContext):
        pass

    # (For Case1 Only) enable it when testing Case1
    # Exit a parse tree produced by AlphabetParser#rule0.
    def exitRule0(self, ctx:AlphabetParser.Rule0Context):
        print(ctx.getText())
# end-of-class

def main():
    file_name = sys.argv[1]
    input = FileStream(file_name)
    lexer = AlphabetLexer(input)
    stream = CommonTokenStream(lexer)
    parser = AlphabetParser(stream)
    tree = parser.content()
    print(tree.toStringTree(recog=parser))

    listener = MyListener()
    walker = ParseTreeWalker()
    walker.walk(listener, tree)
# end-of-def

main()


Cas 1 et résultats:

Alphabet.g4 (Case1)

grammar Alphabet;

content : (rule0|ANYCHAR)* EOF;

rule0 : RULE1 | RULE2 | RULE3 ;
RULE1 : [A-C]+ ;
RULE2 : [DEF]+ ;
RULE3 : ('G'|'H'|'I')+ ;

ANYCHAR : . -> skip;

Résultat:

# Input data (for reference)
# ABBCCCDDDDEEEEE ABCDE
# FFGGHHIIJJKK FGHIJK
# ABCDEFGHIJKL

$ python3 Main.py input.txt 
(content (rule0 ABBCCC) (rule0 DDDDEEEEE) (rule0 ABC) (rule0 DE) (rule0 FF) (rule0 GGHHII) (rule0 F) (rule0 GHI) (rule0 ABC) (rule0 DEF) (rule0 GHI) <EOF>)
ABBCCC
DDDDEEEEE
ABC
DE
FF
GGHHII
F
GHI
ABC
DEF
GHI


Cas 2/3 et résultats:

Alphabet.g4 (Case2)

grammar Alphabet;

content : (RULE0|ANYCHAR)* EOF;

RULE0 : [A-C]+ | [DEF]+ | ('G'|'H'|'I')+ ;

ANYCHAR : . -> skip;

Alphabet.g4 (Case3)

grammar Alphabet;

content : (RULE0|ANYCHAR)* EOF;

RULE0 : RULE1 | RULE2 | RULE3 ;
fragment RULE1 : [A-C]+ ;
fragment RULE2 : [DEF]+ ;
fragment RULE3 : ('G'|'H'|'I')+ ;

ANYCHAR : . -> skip;

Résultat:

# Input data (for reference)
# ABBCCCDDDDEEEEE ABCDE
# FFGGHHIIJJKK FGHIJK
# ABCDEFGHIJKL

$ python3 Main.py input.txt 
(content ABBCCC DDDDEEEEE ABC DE FF GGHHII F GHI ABC DEF GHI <EOF>)

Avez-vous vu "groupes de capture" et "groupes de non-capture" les pièces?




Voyons l'exemple concret2.

Objectif: identifier les nombres octaux/décimaux/hexadécimaux

input.txt

0
123
 1~9999
 001~077
0xFF, 0x01, 0xabc123


Number.g4

grammar Number;

content
    : (number|ANY_CHAR)* EOF
    ;

number
    : DECIMAL_NUMBER
    | OCTAL_NUMBER
    | HEXADECIMAL_NUMBER
    ;

DECIMAL_NUMBER
    : [1-9][0-9]*
    | '0'
    ;

OCTAL_NUMBER
    : '0' '0'..'9'+
    ;

HEXADECIMAL_NUMBER
    : '0x'[0-9A-Fa-f]+
    ;

ANY_CHAR
    : .
    ;


Main.py

import sys
from antlr4 import *
from NumberLexer import NumberLexer
from NumberParser import NumberParser
from NumberListener import NumberListener

class Listener(NumberListener):
    # Exit a parse tree produced by NumberParser#Number.
    def exitNumber(self, ctx:NumberParser.NumberContext):
        print('%8s, dec: %-8s, oct: %-8s, hex: %-8s' % (ctx.getText(),
            ctx.DECIMAL_NUMBER(), ctx.OCTAL_NUMBER(), ctx.HEXADECIMAL_NUMBER()))
    # end-of-def
# end-of-class

def main():
    input = FileStream(sys.argv[1])
    lexer = NumberLexer(input)
    stream = CommonTokenStream(lexer)
    parser = NumberParser(stream)
    tree = parser.content()
    print(tree.toStringTree(recog=parser))

    listener = Listener()
    walker = ParseTreeWalker()
    walker.walk(listener, tree)
# end-of-def

main()


Résultat:

# Input data (for reference)
# 0
# 123
#  1~9999
#  001~077
# 0xFF, 0x01, 0xabc123

$ python3 Main.py input.txt 
(content (number 0) \n (number 123) \n   (number 1) ~ (number 9999) \n   (number 001) ~ (number 077) \n (number 0xFF) ,   (number 0x01) ,   (number 0xabc123) \n <EOF>)
       0, dec: 0       , oct: None    , hex: None    
     123, dec: 123     , oct: None    , hex: None    
       1, dec: 1       , oct: None    , hex: None    
    9999, dec: 9999    , oct: None    , hex: None    
     001, dec: None    , oct: 001     , hex: None    
     077, dec: None    , oct: 077     , hex: None    
    0xFF, dec: None    , oct: None    , hex: 0xFF    
    0x01, dec: None    , oct: None    , hex: 0x01    
0xabc123, dec: None    , oct: None    , hex: 0xabc123

Si vous ajoutez le modificateur "fragment" à DECIMAL_NUMBER, OCTAL_NUMBER, HEXADECIMAL_NUMBER, vous ne pourrez plus capturer les entités numériques (car elles ne sont plus des jetons). Et le résultat sera:

$ python3 Main.py input.txt 
(content 0 \n 1 2 3 \n   1 ~ 9 9 9 9 \n   0 0 1 ~ 0 7 7 \n 0 x F F ,   0 x 0 1 ,   0 x a b c 1 2 3 \n <EOF>)
5
蔡宗容