web-dev-qa-db-fra.com

Transformée en ondelettes en openCV

quelqu'un a-t-il essayé d'implémenter DWT en C++? J'ai vu d'anciennes publications sur ce sujet et je ne les ai pas trouvées utiles, car j'avais besoin d'un coefficient d'approximation et de détails suite à la transformation en ondelettes.

J'ai essayé d'ajouter ceci ( http://wavelet2d.sourceforge.net/ ) à mon projet, mais cela ne fonctionne pas aussi bien que prévu.

Et ceci est trop simple, car les paramètres résultants nécessitent donc un coefficient d'approximation et des détails:

void haar1(float *vec, int n, int w)
{
int i=0;
float *vecp = new float[n];
for(i=0;i<n;i++)
    vecp[i] = 0;

    w/=2;
    for(i=0;i<w;i++)
    {
        vecp[i] = (vec[2*i] + vec[2*i+1])/sqrt(2.0);
        vecp[i+w] = (vec[2*i] - vec[2*i+1])/sqrt(2.0);
    }

    for(i=0;i<(w*2);i++)
            vec[i] = vecp[i];

        delete [] vecp;
}
void haar2(float **matrix, int rows, int cols)
{
    float *temp_row = new float[cols];
    float *temp_col = new float[rows];

    int i=0,j=0;
    int w = cols, h=rows;
while(w>1 || h>1)
{
    if(w>1)
    {
        for(i=0;i<h;i++)
        {
            for(j=0;j<cols;j++)
                temp_row[j] = matrix[i][j];

            haar1(temp_row,cols,w);

            for(j=0;j<cols;j++)
                matrix[i][j] = temp_row[j];
        }
    }

    if(h>1)
    {
        for(i=0;i<w;i++)
        {
            for(j=0;j<rows;j++)
                temp_col[j] = matrix[j][i];
            haar1(temp_col, rows, h);
            for(j=0;j<rows;j++)
                matrix[j][i] = temp_col[j];
        }
    }

    if(w>1)
        w/=2;
    if(h>1)
        h/=2;
}

    delete [] temp_row;
    delete [] temp_col;
}

Alors quelqu'un peut-il m'aider à trouver le dwt implémenté en C++ ou me montrer comment extraire des coefficients de code ci-dessus. Merci

18
la lluvia

Voici la transformation directe et inverse de Haar en ondelettes (utilisée pour le filtrage):

#include "opencv2/opencv.hpp"
#include <iostream>
#include <vector>
#include <stdio.h>

using namespace cv;
using namespace std;

// Filter type
#define NONE 0  // no filter
#define HARD 1  // hard shrinkage
#define SOFT 2  // soft shrinkage
#define GARROT 3  // garrot filter
//--------------------------------
// signum
//--------------------------------
float sgn(float x)
{
    float res=0;
    if(x==0)
    {
        res=0;
    }
    if(x>0)
    {
        res=1;
    }
    if(x<0)
    {
        res=-1;
    }
    return res;
}
//--------------------------------
// Soft shrinkage
//--------------------------------
float soft_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=sgn(d)*(fabs(d)-T);
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Hard shrinkage
//--------------------------------
float hard_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=d;
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Garrot shrinkage
//--------------------------------
float Garrot_shrink(float d,float T)
{
    float res;
    if(fabs(d)>T)
    {
        res=d-((T*T)/d);
    }
    else
    {
        res=0;
    }

    return res;
}
//--------------------------------
// Wavelet transform
//--------------------------------
static void cvHaarWavelet(Mat &src,Mat &dst,int NIter)
{
    float c,dh,dv,dd;
    assert( src.type() == CV_32FC1 );
    assert( dst.type() == CV_32FC1 );
    int width = src.cols;
    int height = src.rows;
    for (int k=0;k<NIter;k++) 
    {
        for (int y=0;y<(height>>(k+1));y++)
        {
            for (int x=0; x<(width>>(k+1));x++)
            {
                c=(src.at<float>(2*y,2*x)+src.at<float>(2*y,2*x+1)+src.at<float>(2*y+1,2*x)+src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y,x)=c;

                dh=(src.at<float>(2*y,2*x)+src.at<float>(2*y+1,2*x)-src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y,x+(width>>(k+1)))=dh;

                dv=(src.at<float>(2*y,2*x)+src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x)-src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y+(height>>(k+1)),x)=dv;

                dd=(src.at<float>(2*y,2*x)-src.at<float>(2*y,2*x+1)-src.at<float>(2*y+1,2*x)+src.at<float>(2*y+1,2*x+1))*0.5;
                dst.at<float>(y+(height>>(k+1)),x+(width>>(k+1)))=dd;
            }
        }
        dst.copyTo(src);
    }   
}
//--------------------------------
//Inverse wavelet transform
//--------------------------------
static void cvInvHaarWavelet(Mat &src,Mat &dst,int NIter, int SHRINKAGE_TYPE=0, float SHRINKAGE_T=50)
{
    float c,dh,dv,dd;
    assert( src.type() == CV_32FC1 );
    assert( dst.type() == CV_32FC1 );
    int width = src.cols;
    int height = src.rows;
    //--------------------------------
    // NIter - number of iterations 
    //--------------------------------
    for (int k=NIter;k>0;k--) 
    {
        for (int y=0;y<(height>>k);y++)
        {
            for (int x=0; x<(width>>k);x++)
            {
                c=src.at<float>(y,x);
                dh=src.at<float>(y,x+(width>>k));
                dv=src.at<float>(y+(height>>k),x);
                dd=src.at<float>(y+(height>>k),x+(width>>k));

               // (shrinkage)
                switch(SHRINKAGE_TYPE)
                {
                case HARD:
                    dh=hard_shrink(dh,SHRINKAGE_T);
                    dv=hard_shrink(dv,SHRINKAGE_T);
                    dd=hard_shrink(dd,SHRINKAGE_T);
                    break;
                case SOFT:
                    dh=soft_shrink(dh,SHRINKAGE_T);
                    dv=soft_shrink(dv,SHRINKAGE_T);
                    dd=soft_shrink(dd,SHRINKAGE_T);
                    break;
                case GARROT:
                    dh=Garrot_shrink(dh,SHRINKAGE_T);
                    dv=Garrot_shrink(dv,SHRINKAGE_T);
                    dd=Garrot_shrink(dd,SHRINKAGE_T);
                    break;
                }

                //-------------------
                dst.at<float>(y*2,x*2)=0.5*(c+dh+dv+dd);
                dst.at<float>(y*2,x*2+1)=0.5*(c-dh+dv-dd);
                dst.at<float>(y*2+1,x*2)=0.5*(c+dh-dv-dd);
                dst.at<float>(y*2+1,x*2+1)=0.5*(c-dh-dv+dd);            
            }
        }
        Mat C=src(Rect(0,0,width>>(k-1),height>>(k-1)));
        Mat D=dst(Rect(0,0,width>>(k-1),height>>(k-1)));
        D.copyTo(C);
    }   
}
//--------------------------------
//
//--------------------------------
int process(VideoCapture& capture)
{
    int n = 0;
    const int NIter=4;
    char filename[200];
    string window_name = "video | q or esc to quit";
    cout << "press space to save a picture. q or esc to quit" << endl;
    namedWindow(window_name, CV_WINDOW_KEEPRATIO); //resizable window;
    Mat frame;
    capture >> frame;

    Mat GrayFrame=Mat(frame.rows, frame.cols, CV_8UC1);
    Mat Src=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Dst=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Temp=Mat(frame.rows, frame.cols, CV_32FC1);
    Mat Filtered=Mat(frame.rows, frame.cols, CV_32FC1);
    for (;;) 
    {
        Dst=0;
        capture >> frame;
        if (frame.empty()) continue;
        cvtColor(frame, GrayFrame, CV_BGR2GRAY);
        GrayFrame.convertTo(Src,CV_32FC1);
        cvHaarWavelet(Src,Dst,NIter);

        Dst.copyTo(Temp);

        cvInvHaarWavelet(Temp,Filtered,NIter,GARROT,30);

        imshow(window_name, frame);

        double M=0,m=0;
        //----------------------------------------------------
        // Normalization to 0-1 range (for visualization)
        //----------------------------------------------------
        minMaxLoc(Dst,&m,&M);
        if((M-m)>0) {Dst=Dst*(1.0/(M-m))-m/(M-m);}
        imshow("Coeff", Dst);

        minMaxLoc(Filtered,&m,&M);
        if((M-m)>0) {Filtered=Filtered*(1.0/(M-m))-m/(M-m);}        
        imshow("Filtered", Filtered);

        char key = (char)waitKey(5);
        switch (key) 
        {
        case 'q':
        case 'Q':
        case 27: //escape key
            return 0;
        case ' ': //Save an image
            sprintf(filename,"filename%.3d.jpg",n++);
            imwrite(filename,frame);
            cout << "Saved " << filename << endl;
            break;
        default:
            break;
        }
    }
    return 0;
}

int main(int ac, char** av) 
{
    VideoCapture capture(0);
    if (!capture.isOpened()) 
    {
        return 1;
    }
    return process(capture);
}
24
Andrey Smorodov

Ici est une autre implémentation de la transformation de Wavelet dans OpenCV de Mahavir :

            #include <opencv2\highgui\highgui.hpp>
            #include <opencv2\core\core.hpp>
            #include <opencv2\core\mat.hpp>
            #include <opencv2\imgproc\imgproc.hpp>
            #include<iostream>
            #include<math.h>
            #include<conio.h>
            using namespace std;
            using namespace cv;

            class image
            {
            public:
                Mat im,im1,im2,im3,im4,im5,im6,temp,im11,im12,im13,im14,imi,imd,imr;
                float a,b,c,d;
                int getim();
            };

            int image::getim()
            {
                im=imread("lena.jpg",0); //Load image in Gray Scale
                imi=Mat::zeros(im.rows,im.cols,CV_8U);
                im.copyTo(imi);

                im.convertTo(im,CV_32F,1.0,0.0);
                im1=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im2=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im3=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im4=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im5=Mat::zeros(im.rows/2,im.cols/2,CV_32F);
                im6=Mat::zeros(im.rows/2,im.cols/2,CV_32F);

                //--------------Decomposition-------------------

                for(int rcnt=0;rcnt<im.rows;rcnt+=2)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        a=im.at<float>(rcnt,ccnt);
                        b=im.at<float>(rcnt+1,ccnt);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _rcnt=rcnt/2;
                        im1.at<float>(_rcnt,ccnt)=c;
                        im2.at<float>(_rcnt,ccnt)=d;
                    }
                }

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im1.at<float>(rcnt,ccnt);
                        b=im1.at<float>(rcnt,ccnt+1);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _ccnt=ccnt/2;
                        im3.at<float>(rcnt,_ccnt)=c;
                        im4.at<float>(rcnt,_ccnt)=d;
                    }
                }

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im2.at<float>(rcnt,ccnt);
                        b=im2.at<float>(rcnt,ccnt+1);
                        c=(a+b)*0.707;
                        d=(a-b)*0.707;
                        int _ccnt=ccnt/2;
                        im5.at<float>(rcnt,_ccnt)=c;
                        im6.at<float>(rcnt,_ccnt)=d;
                    }
                }

                imr=Mat::zeros(256,256,CV_32F);
                imd=Mat::zeros(256,256,CV_32F);
                im3.copyTo(imd(Rect(0,0,128,128)));
                im4.copyTo(imd(Rect(0,127,128,128)));
                im5.copyTo(imd(Rect(127,0,128,128)));
                im6.copyTo(imd(Rect(127,127,128,128)));


                //---------------------------------Reconstruction-------------------------------------

                im11=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im12=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im13=Mat::zeros(im.rows/2,im.cols,CV_32F);
                im14=Mat::zeros(im.rows/2,im.cols,CV_32F);

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols/2;ccnt++)
                    {
                        int _ccnt=ccnt*2;
                        im11.at<float>(rcnt,_ccnt)=im3.at<float>(rcnt,ccnt);     //Upsampling of stage I
                        im12.at<float>(rcnt,_ccnt)=im4.at<float>(rcnt,ccnt);
                        im13.at<float>(rcnt,_ccnt)=im5.at<float>(rcnt,ccnt);
                        im14.at<float>(rcnt,_ccnt)=im6.at<float>(rcnt,ccnt);
                    }
                }


                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt+=2)
                    {

                        a=im11.at<float>(rcnt,ccnt);
                        b=im12.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        im11.at<float>(rcnt,ccnt)=c;
                        d=(a-b)*0.707;                           //Filtering at Stage I
                        im11.at<float>(rcnt,ccnt+1)=d;
                        a=im13.at<float>(rcnt,ccnt);
                        b=im14.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        im13.at<float>(rcnt,ccnt)=c;
                        d=(a-b)*0.707;
                        im13.at<float>(rcnt,ccnt+1)=d;
                    }
                }

                temp=Mat::zeros(im.rows,im.cols,CV_32F);

                for(int rcnt=0;rcnt<im.rows/2;rcnt++)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        int _rcnt=rcnt*2;
                        imr.at<float>(_rcnt,ccnt)=im11.at<float>(rcnt,ccnt);     //Upsampling at stage II
                        temp.at<float>(_rcnt,ccnt)=im13.at<float>(rcnt,ccnt); 
                    }
                }

                for(int rcnt=0;rcnt<im.rows;rcnt+=2)
                {
                    for(int ccnt=0;ccnt<im.cols;ccnt++)
                    {

                        a=imr.at<float>(rcnt,ccnt);
                        b=temp.at<float>(rcnt,ccnt);
                        c=(a+b)*0.707;
                        imr.at<float>(rcnt,ccnt)=c;                                      //Filtering at Stage II
                        d=(a-b)*0.707;
                        imr.at<float>(rcnt+1,ccnt)=d;
                    }
                }

                imd.convertTo(imd,CV_8U);
                namedWindow("Input Image",1);
                imshow("Input Image",imi);
                namedWindow("Wavelet Decomposition",1);
                imshow("Wavelet Decomposition",imd);
                imr.convertTo(imr,CV_8U);
                namedWindow("Wavelet Reconstruction",1);
                imshow("Wavelet Reconstruction",imr);
                waitKey(0);
                return 0;
            }

            int main()
            {
                image my;
                my.getim();
                return 0;
            }

J'espère que quelqu'un le trouvera utile!

6
la lluvia

Je constate qu’il existe très peu d’exemples de code pour les ondelettes en Java, en particulier si vous utilisez openCV. Je devais utiliser ondelette en Java avec openCV et utiliser le code C de @la luvia et le convertir en Java.

La traduction du code a posé de nombreux problèmes, car il comportait de nombreuses différences dans les méthodes openCV et son utilisation. Ce livre m'a aussi beaucoup aidé dans le processus.

J'espère que ce code et le livre donnent une idée de la façon d'utiliser la lib et quelques différences entre le C et Java.

Voici le code:

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

public class Wavelet {

    //Imperative in Java
    static{
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }

    String pathname = "C:/Users/user/img096";


    public static void main(String[] args) {
        Wavelet wavelet = new Wavelet();
        wavelet.applyHaarFoward();
        wavelet.applyHaarReverse();

        Imgcodecs.imwrite(wavelet.pathname+"imi.jpg", wavelet.imi);
        Imgcodecs.imwrite(wavelet.pathname+"imd.jpg", wavelet.imd);
        Imgcodecs.imwrite(wavelet.pathname+"imr.jpg", wavelet.imr);
    }

    Mat im,im1,im2,im3,im4,im5,im6,temp,im11,im12,im13,im14,imi,imd,imr;
    float a,b,c,d;

    private void applyHaarFoward(){
        try{
            im = Imgcodecs.imread(pathname+".jpg", 0);
            imi = new Mat(im.rows(), im.cols(), CvType.CV_8U);
            im.copyTo(imi);

            //in CvType. If the number of channels is omitted, it evaluates to 1. 
            im.convertTo(im, CvType.CV_32F, 1.0, 0.0);
            im1 = new Mat(im.rows()/2, im.cols(), CvType.CV_32F);
            im2 = new Mat(im.rows()/2, im.cols(), CvType.CV_32F);

            im3 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);
            im4 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);

            im5 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);
            im6 = new Mat(im.rows()/2, im.cols()/2, CvType.CV_32F);


            // ------------------- Decomposition ------------------- 

            for (int rcnt = 0; rcnt < im.rows(); rcnt+=2) {
                for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                    //even though the CvType is float with only one channel
                    //the method Mat.get() return a double array 
                    //with only one position, [0].
                    a = (float) im.get(rcnt, ccnt)[0];
                    b = (float) im.get(rcnt+1, ccnt)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _rcnt= rcnt/2;
                    im1.put(_rcnt, ccnt, c);
                    im2.put(_rcnt, ccnt, d);

                }
            }

            for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                    a = (float) im1.get(rcnt, ccnt)[0];
                    b = (float) im1.get(rcnt, ccnt+1)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _ccnt = ccnt/2;
                    im3.put(rcnt, _ccnt, c);
                    im4.put(rcnt, _ccnt, d);
                }
            }

            for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                    a = (float) im2.get(rcnt, ccnt)[0];
                    b = (float) im2.get(rcnt, ccnt+1)[0];
                    c = (float) ((a+b)*0.707);
                    d = (float) ((a-b)*0.707);
                    int _ccnt = ccnt/2;
                    im5.put(rcnt, _ccnt, c);
                    im6.put(rcnt, _ccnt, d);
                }
            }

            imr = Mat.zeros(im.rows(), im.cols(), CvType.CV_32F);//imr = Mat.zeros(512, 512, CvType.CV_32F);
            imd = Mat.zeros(512, 512, CvType.CV_32F);
            im3.copyTo(imd.adjustROI(0, 0, 256, 256));
            im4.copyTo(imd.adjustROI(0, 255, 256, 256));
            im5.copyTo(imd.adjustROI(255, 0, 256, 256));
            im6.copyTo(imd.adjustROI(255, 255, 256, 256));





        }catch(Exception ex){
            System.err.println(ex.getLocalizedMessage());
            ex.printStackTrace();
        }
    }

    private void applyHaarReverse(){
        // ------------------- Reconstruction ------------------- 
                im11 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im12 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im13 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);
                im14 = Mat.zeros(im.rows()/2, im.cols(), CvType.CV_32F);

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols()/2; ccnt++) {
                        int _ccnt  = ccnt*2;
                        im11.put(rcnt, _ccnt, im3.get(rcnt, ccnt));
                        im12.put(rcnt, _ccnt, im4.get(rcnt, ccnt));
                        im13.put(rcnt, _ccnt, im5.get(rcnt, ccnt));
                        im14.put(rcnt, _ccnt, im6.get(rcnt, ccnt));
                    }
                }

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols() - 2; ccnt+=2) {
                        a = (float) im11.get(rcnt, ccnt)[0];
                        b = (float) im12.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        im11.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        im11.put(rcnt, ccnt+1, d);

                        a = (float) im13.get(rcnt, ccnt)[0];
                        b = (float) im14.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        im13.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        im13.put(rcnt, ccnt+1, d);
                    }
                }

                temp = Mat.zeros(im.rows(), im.cols(), CvType.CV_32F);

                for (int rcnt = 0; rcnt < im.rows()/2; rcnt++) {
                    for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                        int _rcnt = rcnt*2;
                        imr.put(_rcnt, ccnt, im11.get(rcnt, ccnt));
                        temp.put(_rcnt, ccnt, im13.get(rcnt, ccnt));
                    }
                }


                for (int rcnt = 0; rcnt < im.rows()-2; rcnt+=2) {
                    for (int ccnt = 0; ccnt < im.cols(); ccnt++) {
                        a = (float) imr.get(rcnt, ccnt)[0];
                        b = (float) temp.get(rcnt, ccnt)[0];
                        c = (float) ((a+b)*0.707);
                        imr.put(rcnt, ccnt, c);
                        d = (float) ((a-b)*0.707);
                        imr.put(rcnt+1, ccnt, d);
                    }
                }

    }
}

J'espère que c'est utile.

1
RochaRF