web-dev-qa-db-fra.com

Comment calculer le point d'intersection de deux lignes en Python?

J'ai deux lignes qui se croisent en un point. Je connais les extrémités des deux lignes. Comment calculer le point d'intersection en Python?

# Given these endpoints
#line 1
A = [X, Y]
B = [X, Y]

#line 2
C = [X, Y]
D = [X, Y]

# Compute this:
point_of_intersection = [X, Y]
34
bolt19

Contrairement aux autres suggestions, ceci est court et n'utilise pas de bibliothèques externes telles que numpy. (Non pas que l'utilisation d'autres bibliothèques soit mauvaise ... c'est bien inutile, surtout pour un problème aussi simple.)

def line_intersection(line1, line2):
    xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
    ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1]) #Typo was here

    def det(a, b):
        return a[0] * b[1] - a[1] * b[0]

    div = det(xdiff, ydiff)
    if div == 0:
       raise Exception('lines do not intersect')

    d = (det(*line1), det(*line2))
    x = det(d, xdiff) / div
    y = det(d, ydiff) / div
    return x, y

print line_intersection((A, B), (C, D))

Et pour info, j'utiliserais des n-uplets au lieu de listes pour vos points. Par exemple.

A = (X, Y)
35
Paul Draper

Ne peut pas rester à l'écart,

Nous avons donc un système linéaire:

UNE1 * x + B1 * y = C1
UNE2 * x + B2 * y = C2

faisons-le avec la règle de Cramer, donc la solution peut être trouvée dans les déterminants:

x = Dx/RÉ
y = Dy/RÉ

Dest le déterminant principal du système:

UNE1 B1
UNE2 B2

et Dx et Dy peut être trouvé à partir des diplômes:

C1 B1
C2 B2

et

UNE1 C1
UNE2 C2

(remarquez que la colonneCse substitue en conséquence aux colonnes coef de x et y )

Alors maintenant, le python, pour la clarté, pour ne pas gâcher les choses, faisons la correspondance entre math et python. Nous allons utiliser le tableau L pour stocker nos coefsA,B,Cdes équations de ligne et de l'intestead de pretty x, y nous aurons [0], [1] , mais peu importe. Ainsi, ce que j'ai écrit ci-dessus aura la forme suivante plus loin dans le code:

pourD

L1 [0] L1 [1]
L2 [0] L2 [1]

pour Dx

L1 [2] L1 [1]
L2 [2] L2 [1]

pour Dy

L1 [0] L1 [2]
L2 [0] L2 [2]

Maintenant, allez coder:

line - produit des coefsA,B,Cde l'équation de la droite sur deux points,
intersection - trouve le point d'intersection (le cas échéant) de deux lignes fournies par les coefs.

from __future__ import division 

def line(p1, p2):
    A = (p1[1] - p2[1])
    B = (p2[0] - p1[0])
    C = (p1[0]*p2[1] - p2[0]*p1[1])
    return A, B, -C

def intersection(L1, L2):
    D  = L1[0] * L2[1] - L1[1] * L2[0]
    Dx = L1[2] * L2[1] - L1[1] * L2[2]
    Dy = L1[0] * L2[2] - L1[2] * L2[0]
    if D != 0:
        x = Dx / D
        y = Dy / D
        return x,y
    else:
        return False

Exemple d'utilisation:

L1 = line([0,1], [2,3])
L2 = line([2,3], [0,4])

R = intersection(L1, L2)
if R:
    print "Intersection detected:", R
else:
    print "No single intersection point detected"
47
rook

Utilisation de la formule de: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection

 def findIntersection(x1,y1,x2,y2,x3,y3,x4,y4):
        px= ( (x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) ) 
        py= ( (x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
        return [px, py]
2
Gabriel Eng

Je n'ai pas trouvé d'explication intuitive sur le Web, alors maintenant que j'ai résolu le problème, voici ma solution. C'est pour des lignes infinies (ce dont j'avais besoin), pas des segments.

Quelques termes dont vous vous souviendrez peut-être:

Une ligne est définie comme suit: y = mx + b OR y = pente * x + y-intercept

Pente = montée sur course = dy/dx = hauteur/distance 

L'ordonnée à l'origine est l'endroit où la ligne croise l'axe Y, où X = 0

Compte tenu de ces définitions, voici quelques fonctions:

def slope(P1, P2):
    # dy/dx
    # (y2 - y1) / (x2 - x1)
    return(P2[1] - P1[1]) / (P2[0] - P1[0])

def y_intercept(P1, slope):
    # y = mx + b
    # b = y - mx
    # b = P1[1] - slope * P1[0]
    return P1[1] - slope * P1[0]

def line_intersect(m1, b1, m2, b2):
    if m1 == m2:
        print ("These lines are parallel!!!")
        return None
    # y = mx + b
    # Set both lines equal to find the intersection point in the x direction
    # m1 * x + b1 = m2 * x + b2
    # m1 * x - m2 * x = b2 - b1
    # x * (m1 - m2) = b2 - b1
    # x = (b2 - b1) / (m1 - m2)
    x = (b2 - b1) / (m1 - m2)
    # Now solve for y -- use either line, because they are equal here
    # y = mx + b
    y = m1 * x + b1
    return x,y

Voici un test simple entre deux lignes (infinies):

A1 = [1,1]
A2 = [3,3]
B1 = [1,3]
B2 = [3,1]
slope_A = slope(A1, A2)
slope_B = slope(B1, B2)
y_int_A = y_intercept(A1, slope_A)
y_int_B = y_intercept(B1, slope_B)
print(line_intersect(slope_A, y_int_A, slope_B, y_int_B))

Sortie:

(2.0, 2.0)
1
Kiki Jewell

Si vos lignes sont constituées de plusieurs points, vous pouvez utiliser cette version.

 enter image description here

import numpy as np
import matplotlib.pyplot as plt
"""
Sukhbinder
5 April 2017
Based on:    
"""

def _rect_inter_inner(x1,x2):
    n1=x1.shape[0]-1
    n2=x2.shape[0]-1
    X1=np.c_[x1[:-1],x1[1:]]
    X2=np.c_[x2[:-1],x2[1:]]    
    S1=np.tile(X1.min(axis=1),(n2,1)).T
    S2=np.tile(X2.max(axis=1),(n1,1))
    S3=np.tile(X1.max(axis=1),(n2,1)).T
    S4=np.tile(X2.min(axis=1),(n1,1))
    return S1,S2,S3,S4

def _rectangle_intersection_(x1,y1,x2,y2):
    S1,S2,S3,S4=_rect_inter_inner(x1,x2)
    S5,S6,S7,S8=_rect_inter_inner(y1,y2)

    C1=np.less_equal(S1,S2)
    C2=np.greater_equal(S3,S4)
    C3=np.less_equal(S5,S6)
    C4=np.greater_equal(S7,S8)

    ii,jj=np.nonzero(C1 & C2 & C3 & C4)
    return ii,jj

def intersection(x1,y1,x2,y2):
    """
INTERSECTIONS Intersections of curves.
   Computes the (x,y) locations where two curves intersect.  The curves
   can be broken with NaNs or have vertical segments.
usage:
x,y=intersection(x1,y1,x2,y2)
    Example:
    a, b = 1, 2
    phi = np.linspace(3, 10, 100)
    x1 = a*phi - b*np.sin(phi)
    y1 = a - b*np.cos(phi)
    x2=phi    
    y2=np.sin(phi)+2
    x,y=intersection(x1,y1,x2,y2)
    plt.plot(x1,y1,c='r')
    plt.plot(x2,y2,c='g')
    plt.plot(x,y,'*k')
    plt.show()
    """
    ii,jj=_rectangle_intersection_(x1,y1,x2,y2)
    n=len(ii)

    dxy1=np.diff(np.c_[x1,y1],axis=0)
    dxy2=np.diff(np.c_[x2,y2],axis=0)

    T=np.zeros((4,n))
    AA=np.zeros((4,4,n))
    AA[0:2,2,:]=-1
    AA[2:4,3,:]=-1
    AA[0::2,0,:]=dxy1[ii,:].T
    AA[1::2,1,:]=dxy2[jj,:].T

    BB=np.zeros((4,n))
    BB[0,:]=-x1[ii].ravel()
    BB[1,:]=-x2[jj].ravel()
    BB[2,:]=-y1[ii].ravel()
    BB[3,:]=-y2[jj].ravel()

    for i in range(n):
        try:
            T[:,i]=np.linalg.solve(AA[:,:,i],BB[:,i])
        except:
            T[:,i]=np.NaN


    in_range= (T[0,:] >=0) & (T[1,:] >=0) & (T[0,:] <=1) & (T[1,:] <=1)

    xy0=T[2:,in_range]
    xy0=xy0.T
    return xy0[:,0],xy0[:,1]


if __== '__main__':

    # a piece of a prolate cycloid, and am going to find
    a, b = 1, 2
    phi = np.linspace(3, 10, 100)
    x1 = a*phi - b*np.sin(phi)
    y1 = a - b*np.cos(phi)

    x2=phi
    y2=np.sin(phi)+2
    x,y=intersection(x1,y1,x2,y2)
    plt.plot(x1,y1,c='r')
    plt.plot(x2,y2,c='g')
    plt.plot(x,y,'*k')
    plt.show()
0
Paul Chen